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Abstract--The Biot equations model the propagation of acoustic waves in fluid-saturated porous media. 
The equations contain coefficients which depend upon the frequency and the fabric, or microstructure, 
of the solid constituent. Recently, a method has been developed for determining the drag and virtual mass 
coefficients in Biot's equations as functions of frequency. The method requires solving for the motion of 
the fluid in the pores when the pore walls are subjected to a spatially uniform, oscillatory motion. To 
determine the fluid motion in realistic pore spaces, a numerical method must be used. In this paper the 
finite element method is used to determine the fluid motion. The drag and virtual mass coefficients are 
determined for several two-dimensional pore spaces. It is concluded that the drag coefficient is very 
insensitive to the pore geometry, while the virtual mass coefficient is sensitive to the pore geometry. It 
is also shown that the results can be expressed in nondimensional forms which permit the coefficients to 
be determined for different values of a characteristic linear dimension of the pore space. 

INTRODUCTION 

Biot (1956a, b) developed a theory to model the propagation of acoustic waves in fluid-saturated 
porous media. It has been shown by numerous investigators that the Biot theory correctly predicts 
many of the acoustical properties of fluid-saturated porous media; see, for example, Berryman 
(1969), Hovem & Ingram (1979), Johnson & Plona (1982), Stoll (1977) and Stoll & Bryan (1969). 
As a result, this theory is regarded by many investigators to be the most promising avenue for the 
study of waves in saturated porous media. 

However, an important question remains to be answered. It is known that the coefficients in 
Biot's equations depend upon the wave frequency, and they also depend on the fabric, or 
microstructure, of the solid constituent. Until these coefficients can be determined as functions of 
frequency, an important obstacle to the accurate comparison of the Biot theory with acoustic 
measurements in porous media will remain. 

Recently, Bedford et al. (1984) proposed a technique for evaluating the drag and virtual mass 
coefficients in Biot's equations as functions of frequency. The method requires solving for the 
motion of the fluid in the pores when the pore walls are subjected to a spatially uniform, oscillatory 
motion. To evaluate the method, Bedford (1986) has applied it to a medium consisting of 
alternating plane layers of fluid and solid. For this simple medium, the drag and virtual mass 
coefficients could be determined in closed form. Furthermore, in this case the phase velocity and 
attenuation of plane waves could be determined exactly. 

It was found that when the drag and virtual mass coefficients were determined using the method 
of Bedford et al., the velocity and attenuation of the fast and slow waves predicted by the Biot 
theory agreed extremely closely with the first two modes of the exact solution over a large range 
of frequencies. However, when the virtual mass coefficient was assumed to be independent of 
frequency (which is currently done by most investigators), the Biot theory accurately predicted the 
velocity and attenuation only at very low frequency. 

With these results as motivation, a program of research has been initiated to use the finite element 
method together with the method of Bedford et al. (1984) to determine the Biot drag and virtual 
mass coefficients for realistic pore spaces. In this paper, the finite element formulation is described 
and used to determine the coefficients as functions of frequency for various two-dimensional pore 
spaces. 

M.F. 14/I--A I 
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THE METHOD 

The one-dimensional forms of Biot's equations can be written (Biot 1956a) as 

and 

~ 2 U  s ¢~2Uf 
(1 - ~b)psffs = (P + 2u) ~ + a ~ - b(ti s -/~f) - -  C ( / ~  s - -  /~/f) "[- fs [la] 

¢~2U s __ ~ 2 U f  _ 
¢~pfa r ---- a ~ + R ~ + 0(ti s -- tif) + c(//s -- af) +f t .  [lb] 

Equation [la] is the equation of motion of the solid constituent. The term q~ is the porosity (the 
pore volume per unit volume of the porous medium). The terms Ps and us are the density and the 
displacement of the solid material, respectively. The terms P,/~, Q and R are constitutive coefficients 
which depend on the properties of the fluid and solid constituents. The terms containing b and c 
are forces exerted on the solid constituent by the fluid constituent due to their relative motion. The 
term containing b is linear in the relative velocity, and b is the drag coefficient. The term containing 
c is linear in the relative acceleration. This is called a "virtual mass" force, and c is the virtual mass 
coefficient. Equation [lb] is the equation of motion of the fluid constituent. The terms pf and uf 
are the density and the displacement of the fluid, respectively. The terms f~ and f~ are the external 
body force densities. 

Consider an imaginary experiment in which the solid constituent is given a spat ia l ly  un i form,  
steady-state oscillatory motion 

us = D e / ° ' ,  [2] 

where D is a real constant and o~ is the frequency. This could be achieved (hypothetically) by 
applying a suitable prescribed external body force densityf~. The resulting steady-state motion of 
the fluid will be of the form 

uf = U e/% [3] 

where U is a complex constant. Substituting these two expressions for us and Ur into the Biot 
equation of motion for the fluid constituent [lb] gives 

~bpr~oU = (ib - ogc)(U - D). [4] 

The terms in [lb] containing Q and R vanish because the motion is spatially uniform. The complex 
equation [4] can be solved for the two real coefficients b and c, yielding 

[5a] 

and 

c = - ~ b p f R e [ ~ _ l  1, [5b] 

where 0 = U/D. If the term 0 is known as a function of frequency, [5a, b] can be solved for b 
and c as functions of frequency. Thus determining b and c reduces to the solution of a steady-state 
boundary value problem in fluid mechanics: give the boundary of the pore volume of a porous 
medium a spatially uniform, oscillatory motion [2] and determine the motion of the fluid within. 
The volumetric average of the fluid displacement is identified with the fluid displacement ur in Biot's 
equations. In this way, 0 can be determined as a function of frequency. 

Blot (1956b) determined the drag coefficient as a function of frequency by subjecting the pore 
fluid in a straight, cylindrical pore to an oscillatory pressure gradient. His method was extended by 
Hovem & Ingram (1979) to determine the virtual mass coefficient as a function of frequency. 
Bedford et  al. (1984) made numerical comparisons of the results of their method for the case of 
a cylindrical pore and found that they were identical to those of Biot and of Hovem & Ingram. 
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Figure I. Phase velocity of the Blot fast wave and the first mode of the exact solution. 

Can the coefficients determined as functions of frequency in this way be applied to the problem 
of waves propagating in the medium? To investigate this question, the method has been applied 
to a medium consisting of alternating plane layers of fluid and solid (Bedford 1986). The material 
properties and the layer thicknesses were chosen to correspond to water-saturated sand. In figures 
1 and 2, the phase velocity and attenuation of the fast wave predicted by Blot's equations are 
compared to the first mode of the exact solution for compressional waves propagating parallel to 
the layers. When the drag and virtual mass coefficients are determined using the method of Bedford 
et al., the Blot theory matches the exact solution very closely up to a frequency of 1 MHz. (The 
curves are indistinguishable.) However, when the virtual mass coefficient is assumed to be constant, 
the Blot theory agrees with the exact solution only at very low frequencies. 

Since the coefficients are determined by subjecting the solid constituent to a spatially uniform 
oscillation, the results will clearly be applicable to propagating waves only when wavelengths are 
large in comparison to a characteristic linear dimension of the pore space. However, this is not 
an important restriction since the Blot theory itself is subject to the same condition. 

FINITE ELEMENT FORMULATION 

The boundary value problem 

The method of Bedford et al. (1984) requires that the motion of the viscous, compressible fluid 
in the pore space of a porous medium be determined when the pore walls are given a spatially 
uniform oscillatory motion. In this paper the motion of the fluid is determined using the finite 
element method (e.g. Becker et al. 1981). 

Under the assumption of small displacements, a viscous compressible fluid is governed by the 
equation 

pr~ = - Vp + (K + ½17)V(V.O) + tlV2O. [6] 
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Figure 2. Attenuation of the  Biot ~s t  wave a n d t h e  first mode of the  exact solution. 
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The vector u is the displacement of  the fluid, p is the pressure, x is the bulk viscosity and r/is the 
viscosity. The pressure is related to the dilatation of the fluid by 

p = - KV.u, [7] 

where K is the bulk modulus of the fluid. 
The boundary condition imposed at the boundary of the pore space is 

u = D ei~'e~, [8] 

where el is a unit vector that specifies the direction of  the oscillatory motion of the boundary and 
co is the frequency. The resulting steady-state solutions for the displacement and pressure can be 
written as 

u = ~ e i°~' [9a] 

and 

p = p e i'°t. [9b] 

Substituting these solutions into [6] and [7], the steady-state boundary value problem reduces to 

and 

A V2fi + BV(V. ~) + ~ = 0 ] 

V.fi - ~ ~ in 
K 

ft [lOa] 

= Det ont3fl, [10b] 

where II is the domain (the volume) in which the solution is to be obtained, ~ 1  is the surface of 
t'l, and A and B are defined by 

and 

it/ 
A - [l la] 

(pfog)' 

K i ( x  + ½q) 
B - - -  + - -  [1 l b ]  

(pro~ ~) (pr~o) 

THE V A R I A T I O N A L  F O R M U L A T I O N  

Multiplying [10a] by a variation 6~ and integrating over the domain yields the variational 
expression 

n[A V2~ + BV(V' ~) + ~]' 6 fi dv = 0. [I 2] 

By integrating by parts, this equation can be written as 

n [A Vfi:V6fi + B(V.fi)(V.6~) - ~.5~] dv = 0, [13] 

where the notation V~:V6 f i  denotes the product 

dxj ~xj" 

Let a functional n (~) be defined by 

~(~) = ~  [ A V g : V f i + B ( V . ~ ) ( V . ~ ) - ~ . ~ ] d v .  [14] 
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At small frequencies, the change in density of the fluid and consequently the dilatation V'~ are 
very small. This results in computational difficulties which can be avoided by expressing the 
problem in a form suitable for a nearly incompressible material (Hermann 1965). Equation [10b] 
is introduced into the functional [14] as a constraint by introducing a Lagrange multiplier 2. This 
results in an "augmented" functional defined by 

x*(FI, 2,~)=~L[AV~:V~-(B)~v'u-u'u+22(V'fi+~)ldv. [15] 
K]_I 

equating the variation of this expression to zero, it can be shown that 2 = - B ~ / ( 2 K ) .  By 
Substituting this result into the augmented functional, it can be written as 

n*(~,~)=~fn[AV~:V~-(~--)V'r~-(~)~2-~'~ldv. [16] 

Taking the variation of this expression yields the variational formulation 

6n*=fn[AV':Vrfi-(B)(v"3p+pV'fii)-(~5)~6~-~'3,]dv=O. [17] 

THE FINITE ELEMENT APPROXIMATION 

A finite element approximation is obtained by replacing the domain f~ in [17] by a discretized 
domain f~h" The objective is to seek approximate solutions ~h and .3h which depend upon the mesh 
size of the discretized domain. The solution ih is assumed to be contained in a subspace of Hl(f~h), 
and the solution Ph is assumed to be contained in a subspace of H°(tah), where H"(tah) denotes the 
set of functions on flh whose nth derivatives are square integrable. Equation [17] becomes 

- 6 -  B B _ 6 -  .6°hi d v  = 0 .  [ 1 8 ]  

In terms of suitable finite element basis functions ~v i and O~, the approximate solutions can be 
written as 

~h = ~ T,f5,, p, = ~ O,P,, [191 
i i 

where llSJ i and Pi are the nodal point values of uh and ,bh, respectively. Substituting [19] into [18] 
yields the linear system of equations 

Kll KI21 [~] 
K,2 /(22_] = 0, [20] 

where 

(K,,)o = fo dr, ] 
(KI2),y=fnh[-(~)V'T, Oy]dv, [21] 

Equations [20] have been solved by applying the essential boundary conditions fi = Del on the pore 
boundaries and periodic boundary conditions where the domains of interest exhibit periodicity. 

SCALING 

Determining the Biot drag and virtual mass coefficients as functions of frequency by the method 
described here requires a substantial investment in computer time. An important question is 
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whether, once the coefficients have been determined for a particular fabric, or microstructure, the 
results can be scaled if the characteristic linear dimension of the pore space changes. For  example, 
if the coefficients were determined for the case of spherical grains with a particular packing, can 
the results be scaled to determine the coefficients for spherical grains of the same packing but a 
different diameter? In this section it is shown that the answer to this question is yes, at least within 
a particular range of frequencies and microdimensions. 

By substituting [7] into [6], the equation of motion of the viscous compressible fluid in the pores 
can be written in terms of the displacement components Uk: 

~2Uk ~2Ui 1 ) t~ 2/~i ~ 2/'~k [22] 
p f - - ~ = K ~ + ( x + ~  ~ + r l  OxiOx / 

In terms of  the steady-state solution Uk-----fik ei°'', this is 

02fii 02Ui t32fik [23] 
--co2pfF4k = K ~i~ ~ + ico(x q- ~)  ~ i ~  -t- ito~ 

8xi~x-----~/ 

Let D be a characteristic linear dimension of the pore space, and let dimensionless displacements 
and coordinates be defined by 

~k Xk 
12, _ ~ ,  -~k -- D" [24] 

In terms of these dimensionless quantities, [23] can be written as 

- - U k  = + i  ~---:--~--~. + i 

coD PrcoD2 Re' = PrcoD2 
M - - -  Re = , [26] K') /2' ~ ~+~n" 

Pf/ 

where 

It is seen that the equation which governs the dimensionless displacement fit (and therefore the 
dimensionless average displacement in the direction of  motion U) is characterized by three 
dimensionless groups. The dimensionless group M can be recognized as a Mach number [the 
term (K/Rf) U2 is the speed of  sound in the fluid], and the dimensionless groups Re and Re' are 
Reynolds numbers. This result together with [5a, b] for b and c leads to the conclusion that the 
quantities b/(d)pfco) and C/(~pf) can be expressed as functions of M, Re and Re'. 

The Mach number M is a measure of the effect on the solution of  the compressibility of the fluid. 
For  frequencies that are sufficiently low that M s << 1, the effect of compressibility can be neglected 
and the quantities b/(qbpfco) and c/(c~pr) can be expressed as functions of Re alone. (The analogy 
with gas dynamics is obvious.) 

For this reason, the principal results will be presented in the next section as plots of  the 
dimensionless drag coefficient b/(c~pfco) and dimensionless virtual mass coefficient c/(dppf) as 
functions of  the "dimensionless frequency" Re. This makes the results independent of the 
properties of the fluid, and also makes them independent of the characteristic linear dimension D 
so long as the restriction ME<< 1 is satisfied. It must be emphasized that this restriction refers to 
the frequency range within which the results can be scaled. The computations that have been made 
did account for the compressibility of  the fluid. 

T W O - D I M E N S I O N A L  RESULTS 

The first objective was to verify the finite element formulation and investigate the fineness of the 
mesh necessary to obtain accurate results for b and c as functions of  frequency. In order to do 
so, the first case considered was a pore volume consisting of  a plane layer of  fluid parallel to the 
direction of  the oscillatory motion. For  this case, an exact solution for the fluid motion, and thus 
for b and c, can be obtained (Bedford 1986). 
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I 
Figure 3. A finite element mesh for a plane layer of fluid. 
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Figure 4. Computed and exact displacement distribution at 100 Hz. 

An example of  the mesh used for this case is shown in figure 3. In figure 4, the computed values 
of  the dimensionless displacement ~ = u/D (crosses) are compared to the exact distribution across 
the layer for a frequency of  100 Hz. At this relatively low frequency the distribution is essentially 
a Poiseuille one, and the agreement of  the finite element solution with the exact solution is excellent. 
In figure 5, the computed displacement distribution is compared to the exact distribution for a 
frequency of  100 kHz. In this case, a relatively coarse mesh was used (10 elements across the layer), 
and the agreement with the exact solution deteriorates near the wall. In figure 6, the same case 
is presented with a mesh of  20 elements across the layer, and the displacement distribution near 
the wall is modeled accurately. 
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Figure 6. Computed and exact displacement distribution at 100 kHz with 20 elements across the layer. 

In figures 7 and 8, the values of b and c obtained using the computed displacement distributions 
for a layer of  fluid are compared to the values obtained using the exact distributions. Computations 
are shown for two values of  the layer thickness. These results illustrate the accuracy of the finite 
element computations. In figures 9 and 10, the same results are presented as plots of  b/(o~c~pf) and 
c/(dppf) as functions of  the dimensionless frequency Re. In these two figures the scaling discussed 
in the previous section is illustrated. The results for three values of  the layer thickness fall on a 
single curve. 

An important result that was observed is that the values orb and c were approximately constant 
(independent of frequency) up to a value of Re of approximately 10. 

Another case that was considered was chosen to be a two-dimensional approximation of  the pore 
space in a porous medium consisting of  spherical grains. The geometry was a periodic array of 
cylinders with porosity (~ = 0.365. The periodic "microelement" and the finite element mesh used 
for this case are shown in figure l l. An important question that was investigated in this 
two-dimensional study was the sensitivity of  the computed values of b and c to the shape of the 
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Figure 10. Computed and exact values of c/dppf as functions of Re. 

"grains" of  the porous medium. For  this purpose computat ions were also carried out for three 
other geometries, each having the same porosity (0.365): 

• A periodic array of square rods. The periodic element and mesh are shown in 
figure 12. The motion was horizontal; thus the rods were "d iamond shaped". 

• A periodic array of  irregularly shaped rods with elongation oriented horizontally. 
The periodic element and mesh are shown in figure 13. 

• The periodic array of irregularly shaped elements with elongation oriented 
vertically. 

The results for b/(coc~pr) and C/((~pf) as functions of  dimensionless frequency Re for the various 
shapes are shown in figures 14 and 15. The characteristic dimension D was chosen to be the 
minimum gap width between the rods. The value of  D used in the case of  the array of  square rods 
was 0.0451 mm. The value of  D used for the other shapes was 0.0224 mm. From the results it is 
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Figure 14. The dimensionless drag coefficient as a function of dimensionless frequency for various pore 
geometries. 

seen that the drag coefficient is remarkably insensitive to the geometry of the pore space. (It is 
important to recall that the porosity was the same in each geometry. In each geometry except the 
square rods, the minimum gap between the rods was the same.) By contrast, the virtual mass 
coefficient is seen to be very sensitive to the geometry. However, for both coefficients, the qualitative 
dependence on the frequency of the various geometries is very similar. 

C O N C L U S I O N S  

It has been found feasible to use the finite element method together with the method of Bedford 
et al. (1984) to obtain accurate values of the Biot drag and virtual mass coefficients as functions 
of frequency. Within a particular range of frequency, the results can be scaled to obtain the 
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Figure 15. The dimensionless virtual mass coefficient as a function of dimensionless frequency for various 
pore geometries. 
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coefficients as functions of  frequency for other values of a characteristic dimension of the pore 
geometry. The computed values of the coefficients are approximately constant (independent of 
frequency) up to a value of dimensionless frequency Re of approximately 10. 

When computations were carried out for various pore geometries holding the porosity fixed, the 
drag coefficient was found to be very insensitive to changes in geometry while the virtual mass 
coefficient was found to be quite sensitive to the geometry. However, the qualitative dependence 
of  both coefficients on frequency was quite similar for the various geometries, suggesting that it 
may be possible to use empirical "shape factors" to account for pore geometry. 

The ultimate objective of this research is to determine the Biot drag and virtual mass coefficients 
as functions of frequency for three-dimensional pore spaces. The results reported in this paper 
suggest that it will be feasible to do so. 
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